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Part III

Generalized Linear Models5

So far, we’ve seen a regression example, and a classification example. In the
regression example, we had y|x; θ ∼ N (µ, σ2), and in the classification one,
y|x; θ ∼ Bernoulli(φ), for some appropriate definitions of µ and φ as functions
of x and θ. In this section, we will show that both of these methods are
special cases of a broader family of models, called Generalized Linear Models
(GLMs). We will also show how other models in the GLM family can be
derived and applied to other classification and regression problems.

8 The exponential family

To work our way up to GLMs, we will begin by defining exponential family
distributions. We say that a class of distributions is in the exponential family
if it can be written in the form

p(y; η) = b(y) exp(ηTT (y)− a(η)) (6)

Here, η is called the natural parameter (also called the canonical param-

eter) of the distribution; T (y) is the sufficient statistic (for the distribu-
tions we consider, it will often be the case that T (y) = y); and a(η) is the log
partition function. The quantity e−a(η) essentially plays the role of a nor-
malization constant, that makes sure the distribution p(y; η) sums/integrates
over y to 1.

A fixed choice of T , a and b defines a family (or set) of distributions that
is parameterized by η; as we vary η, we then get different distributions within
this family.

We now show that the Bernoulli and the Gaussian distributions are ex-
amples of exponential family distributions. The Bernoulli distribution with
mean φ, written Bernoulli(φ), specifies a distribution over y ∈ {0, 1}, so that
p(y = 1;φ) = φ; p(y = 0;φ) = 1 − φ. As we vary φ, we obtain Bernoulli
distributions with different means. We now show that this class of Bernoulli
distributions, ones obtained by varying φ, is in the exponential family; i.e.,
that there is a choice of T , a and b so that Equation (6) becomes exactly the
class of Bernoulli distributions.

5The presentation of the material in this section takes inspiration from Michael I.
Jordan, Learning in graphical models (unpublished book draft), and also McCullagh and
Nelder, Generalized Linear Models (2nd ed.).
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We write the Bernoulli distribution as:

p(y;φ) = φy(1− φ)1−y

= exp(y log φ+ (1− y) log(1− φ))

= exp

((

log

(

φ

1− φ

))

y + log(1− φ)

)

.

Thus, the natural parameter is given by η = log(φ/(1− φ)). Interestingly, if
we invert this definition for η by solving for φ in terms of η, we obtain φ =
1/(1 + e−η). This is the familiar sigmoid function! This will come up again
when we derive logistic regression as a GLM. To complete the formulation
of the Bernoulli distribution as an exponential family distribution, we also
have

T (y) = y

a(η) = − log(1− φ)

= log(1 + eη)

b(y) = 1

This shows that the Bernoulli distribution can be written in the form of
Equation (6), using an appropriate choice of T , a and b.

Let’s now move on to consider the Gaussian distribution. Recall that,
when deriving linear regression, the value of σ2 had no effect on our final
choice of θ and hθ(x). Thus, we can choose an arbitrary value for σ2 without
changing anything. To simplify the derivation below, let’s set σ2 = 1.6 We
then have:

p(y;µ) =
1√
2π

exp

(

−1

2
(y − µ)2

)

=
1√
2π

exp

(

−1

2
y2
)

· exp
(

µy − 1

2
µ2

)

6If we leave σ2 as a variable, the Gaussian distribution can also be shown to be in the
exponential family, where η ∈ R

2 is now a 2-dimension vector that depends on both µ and
σ. For the purposes of GLMs, however, the σ2 parameter can also be treated by considering
a more general definition of the exponential family: p(y; η, τ) = b(a, τ) exp((ηTT (y) −
a(η))/c(τ)). Here, τ is called the dispersion parameter, and for the Gaussian, c(τ) = σ2;
but given our simplification above, we won’t need the more general definition for the
examples we will consider here.
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Thus, we see that the Gaussian is in the exponential family, with

η = µ

T (y) = y

a(η) = µ2/2

= η2/2

b(y) = (1/
√
2π) exp(−y2/2).

There’re many other distributions that are members of the exponen-
tial family: The multinomial (which we’ll see later), the Poisson (for mod-
elling count-data; also see the problem set); the gamma and the exponen-
tial (for modelling continuous, non-negative random variables, such as time-
intervals); the beta and the Dirichlet (for distributions over probabilities);
and many more. In the next section, we will describe a general “recipe”
for constructing models in which y (given x and θ) comes from any of these
distributions.

9 Constructing GLMs

Suppose you would like to build a model to estimate the number y of cus-
tomers arriving in your store (or number of page-views on your website) in
any given hour, based on certain features x such as store promotions, recent
advertising, weather, day-of-week, etc. We know that the Poisson distribu-
tion usually gives a good model for numbers of visitors. Knowing this, how
can we come up with a model for our problem? Fortunately, the Poisson is an
exponential family distribution, so we can apply a Generalized Linear Model
(GLM). In this section, we will we will describe a method for constructing
GLM models for problems such as these.

More generally, consider a classification or regression problem where we
would like to predict the value of some random variable y as a function of
x. To derive a GLM for this problem, we will make the following three
assumptions about the conditional distribution of y given x and about our
model:

1. y | x; θ ∼ ExponentialFamily(η). I.e., given x and θ, the distribution of
y follows some exponential family distribution, with parameter η.

2. Given x, our goal is to predict the expected value of T (y) given x.
In most of our examples, we will have T (y) = y, so this means we
would like the prediction h(x) output by our learned hypothesis h to
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satisfy h(x) = E[y|x]. (Note that this assumption is satisfied in the
choices for hθ(x) for both logistic regression and linear regression. For
instance, in logistic regression, we had hθ(x) = p(y = 1|x; θ) = 0 · p(y =
0|x; θ) + 1 · p(y = 1|x; θ) = E[y|x; θ].)

3. The natural parameter η and the inputs x are related linearly: η = θTx.
(Or, if η is vector-valued, then ηi = θTi x.)

The third of these assumptions might seem the least well justified of
the above, and it might be better thought of as a “design choice” in our
recipe for designing GLMs, rather than as an assumption per se. These
three assumptions/design choices will allow us to derive a very elegant class
of learning algorithms, namely GLMs, that have many desirable properties
such as ease of learning. Furthermore, the resulting models are often very
effective for modelling different types of distributions over y; for example, we
will shortly show that both logistic regression and ordinary least squares can
both be derived as GLMs.

9.1 Ordinary Least Squares

To show that ordinary least squares is a special case of the GLM family
of models, consider the setting where the target variable y (also called the
response variable in GLM terminology) is continuous, and we model the
conditional distribution of y given x as a Gaussian N (µ, σ2). (Here, µ may
depend x.) So, we let the ExponentialFamily(η) distribution above be
the Gaussian distribution. As we saw previously, in the formulation of the
Gaussian as an exponential family distribution, we had µ = η. So, we have

hθ(x) = E[y|x; θ]
= µ

= η

= θTx.

The first equality follows from Assumption 2, above; the second equality
follows from the fact that y|x; θ ∼ N (µ, σ2), and so its expected value is given
by µ; the third equality follows from Assumption 1 (and our earlier derivation
showing that µ = η in the formulation of the Gaussian as an exponential
family distribution); and the last equality follows from Assumption 3.
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9.2 Logistic Regression

We now consider logistic regression. Here we are interested in binary classifi-
cation, so y ∈ {0, 1}. Given that y is binary-valued, it therefore seems natural
to choose the Bernoulli family of distributions to model the conditional dis-
tribution of y given x. In our formulation of the Bernoulli distribution as
an exponential family distribution, we had φ = 1/(1 + e−η). Furthermore,
note that if y|x; θ ∼ Bernoulli(φ), then E[y|x; θ] = φ. So, following a similar
derivation as the one for ordinary least squares, we get:

hθ(x) = E[y|x; θ]
= φ

= 1/(1 + e−η)

= 1/(1 + e−θT x)

So, this gives us hypothesis functions of the form hθ(x) = 1/(1 + e−θT x). If
you are previously wondering how we came up with the form of the logistic
function 1/(1 + e−z), this gives one answer: Once we assume that y condi-
tioned on x is Bernoulli, it arises as a consequence of the definition of GLMs
and exponential family distributions.

To introduce a little more terminology, the function g giving the distri-
bution’s mean as a function of the natural parameter (g(η) = E[T (y); η])
is called the canonical response function. Its inverse, g−1, is called the
canonical link function. Thus, the canonical response function for the
Gaussian family is just the identify function; and the canonical response
function for the Bernoulli is the logistic function.7

9.3 Softmax Regression

Let’s look at one more example of a GLM. Consider a classification problem
in which the response variable y can take on any one of k values, so y ∈
{1, 2, . . . , k}. For example, rather than classifying email into the two classes
spam or not-spam—which would have been a binary classification problem—
we might want to classify it into three classes, such as spam, personal mail,
and work-related mail. The response variable is still discrete, but can now
take on more than two values. We will thus model it as distributed according
to a multinomial distribution.

7Many texts use g to denote the link function, and g−1 to denote the response function;
but the notation we’re using here, inherited from the early machine learning literature,
will be more consistent with the notation used in the rest of the class.
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Let’s derive a GLM for modelling this type of multinomial data. To do
so, we will begin by expressing the multinomial as an exponential family
distribution.

To parameterize a multinomial over k possible outcomes, one could use
k parameters φ1, . . . , φk specifying the probability of each of the outcomes.
However, these parameters would be redundant, or more formally, they would
not be independent (since knowing any k− 1 of the φi’s uniquely determines
the last one, as they must satisfy

∑k

i=1 φi = 1). So, we will instead pa-
rameterize the multinomial with only k − 1 parameters, φ1, . . . , φk−1, where
φi = p(y = i;φ), and p(y = k;φ) = 1−∑k−1

i=1 φi. For notational convenience,

we will also let φk = 1 −∑k−1
i=1 φi, but we should keep in mind that this is

not a parameter, and that it is fully specified by φ1, . . . , φk−1.
To express the multinomial as an exponential family distribution, we will

define T (y) ∈ R
k−1 as follows:

T (1) =















1
0
0
...
0















, T (2) =















0
1
0
...
0















, T (3) =















0
0
1
...
0















, · · · , T (k−1) =















0
0
0
...
1















, T (k) =















0
0
0
...
0















,

Unlike our previous examples, here we do not have T (y) = y; also, T (y) is
now a k − 1 dimensional vector, rather than a real number. We will write
(T (y))i to denote the i-th element of the vector T (y).

We introduce one more very useful piece of notation. An indicator func-
tion 1{·} takes on a value of 1 if its argument is true, and 0 otherwise
(1{True} = 1, 1{False} = 0). For example, 1{2 = 3} = 0, and 1{3 =
5 − 2} = 1. So, we can also write the relationship between T (y) and y as
(T (y))i = 1{y = i}. (Before you continue reading, please make sure you un-
derstand why this is true!) Further, we have that E[(T (y))i] = P (y = i) = φi.

We are now ready to show that the multinomial is a member of the
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exponential family. We have:

p(y;φ) = φ
1{y=1}
1 φ

1{y=2}
2 · · ·φ1{y=k}

k

= φ
1{y=1}
1 φ

1{y=2}
2 · · ·φ1−

∑k−1
i=1 1{y=i}

k

= φ
(T (y))1
1 φ

(T (y))2
2 · · ·φ1−

∑k−1
i=1 (T (y))i

k

= exp((T (y))1 log(φ1) + (T (y))2 log(φ2) +

· · ·+
(

1−∑k−1
i=1 (T (y))i

)

log(φk))

= exp((T (y))1 log(φ1/φk) + (T (y))2 log(φ2/φk) +

· · ·+ (T (y))k−1 log(φk−1/φk) + log(φk))

= b(y) exp(ηTT (y)− a(η))

where

η =











log(φ1/φk)
log(φ2/φk)

...
log(φk−1/φk)











,

a(η) = − log(φk)

b(y) = 1.

This completes our formulation of the multinomial as an exponential family
distribution.

The link function is given (for i = 1, . . . , k) by

ηi = log
φi

φk

.

For convenience, we have also defined ηk = log(φk/φk) = 0. To invert the
link function and derive the response function, we therefore have that

eηi =
φi

φk

φke
ηi = φi (7)

φk

k
∑

i=1

eηi =
k
∑

i=1

φi = 1

This implies that φk = 1/
∑k

i=1 e
ηi , which can be substituted back into E-

quation (7) to give the response function

φi =
eηi

∑k

j=1 e
ηj
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This function mapping from the η’s to the φ’s is called the softmax function.
To complete our model, we use Assumption 3, given earlier, that the ηi’s

are linearly related to the x’s. So, have ηi = θTi x (for i = 1, . . . , k − 1),
where θ1, . . . , θk−1 ∈ R

n+1 are the parameters of our model. For notational
convenience, we can also define θk = 0, so that ηk = θTk x = 0, as given
previously. Hence, our model assumes that the conditional distribution of y
given x is given by

p(y = i|x; θ) = φi

=
eηi

∑k

j=1 e
ηj

=
eθ

T
i x

∑k

j=1 e
θTj x

(8)

This model, which applies to classification problems where y ∈ {1, . . . , k}, is
called softmax regression. It is a generalization of logistic regression.

Our hypothesis will output

hθ(x) = E[T (y)|x; θ]

= E











1{y = 1}
1{y = 2}

...
1{y = k − 1}

∣

∣

∣

∣

∣

∣

∣

∣

∣

x; θ
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φ1

φ2
...

φk−1











=

















exp(θT1 x)
∑k

j=1 exp(θ
T
j x)

exp(θT2 x)
∑k

j=1 exp(θ
T
j x)

...
exp(θT

k−1x)∑k
j=1 exp(θ

T
j x)

















.

In other words, our hypothesis will output the estimated probability that
p(y = i|x; θ), for every value of i = 1, . . . , k. (Even though hθ(x) as defined
above is only k − 1 dimensional, clearly p(y = k|x; θ) can be obtained as
1−∑k−1

i=1 φi.)
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Lastly, let’s discuss parameter fitting. Similar to our original derivation
of ordinary least squares and logistic regression, if we have a training set of
m examples {(x(i), y(i)); i = 1, . . . ,m} and would like to learn the parameters
θi of this model, we would begin by writing down the log-likelihood

ℓ(θ) =
m
∑

i=1

log p(y(i)|x(i); θ)

=
m
∑

i=1

log
k
∏

l=1

(

eθ
T
l
x(i)

∑k

j=1 e
θTj x(i)

)1{y(i)=l}

To obtain the second line above, we used the definition for p(y|x; θ) given
in Equation (8). We can now obtain the maximum likelihood estimate of
the parameters by maximizing ℓ(θ) in terms of θ, using a method such as
gradient ascent or Newton’s method.


